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Abstract
Many potential stressors to aquatic environments operate over large spatial scales, prompting the need to assess and

monitor both site-specific and regional dynamics of fish populations. We used hierarchical Bayesian models to evaluate
the spatial and temporal variability in density and capture probability of age-1 and older Brook Trout Salvelinus
fontinalis from three-pass removal data collected at 291 sites over a 37-year time period (1975–2011) in Pennsylvania
streams. There was high between-year variability in density, with annual posterior means ranging from 2.1 to 10.2
fish/100 m2; however, there was no significant long-term linear trend. Brook Trout density was positively correlated
with elevation and negatively correlated with percent developed land use in the network catchment. Probability
of capture did not vary substantially across sites or years but was negatively correlated with mean stream width.
Because of the low spatiotemporal variation in capture probability and a strong correlation between first-pass CPUE
(catch/min) and three-pass removal density estimates, the use of an abundance index based on first-pass CPUE could
represent a cost-effective alternative to conducting multiple-pass removal sampling for some Brook Trout monitoring
and assessment objectives. Single-pass indices may be particularly relevant for monitoring objectives that do not
require precise site-specific estimates, such as regional monitoring programs that are designed to detect long-term
linear trends in density.

Management decisions for inland freshwater fisheries are of-
ten made on a site- or water body-specific basis; however, there
is an increasing need to also monitor and assess the regional
dynamics, status, and trends of fish populations. This need is
due in large part to increases in potential stressors acting over
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large spatial scales. For example, climate and land use changes,
including increases in urbanization, have been found to nega-
tively affect fish assemblages over large spatial extents (Wenger
et al. 2008, 2011; Isaak et al. 2012). More recently, the large-
scale exploration for and extraction of natural gas in previously
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BROOK TROUT DENSITY DYNAMICS 259

inaccessible underground reservoirs have expanded throughout
the USA (Sutherland et al. 2010; Entrekin et al. 2011), and many
of the activities associated with exploration and extraction have
the potential to deleteriously affect fish communities (Dauwalter
2013).

Climate change, urbanization (i.e., developed land), and en-
ergy development have all been identified as threats to the con-
servation and management of native Brook Trout Salvelinus
fontinalis throughout much of the species’ native range in the
eastern USA (Meisner 1990; Hudy et al. 2008; Weltman-Fahs
and Taylor 2013). For instance, in Pennsylvania, a large portion
of the state’s wild Brook Trout resource is located above large
reservoirs of natural gas. Natural gas exploration and extraction
from these reservoirs could directly and indirectly affect Brook
Trout populations. Thus, quantifying the relationships between
Brook Trout density and natural and anthropogenic landscape
characteristics is important for predicting potential changes in
populations as landscapes are altered.

Although it is challenging given limited fiscal resources and
the spatial extent of the Brook Trout’s range, monitoring the
response of Brook Trout to regional development is necessary
to ensure long-term persistence and distribution of the species.
Multiple-pass removal sampling is commonly used to estimate
abundance and community attributes of stream-dwelling fishes,
but it can be time intensive. For example, Sweka et al. (2012)
suggested that a 400–450-m reach length was needed to
estimate Brook Trout density within 25% of the true density by
using three-pass removal sampling in Pennsylvania headwater
streams. Although these reach lengths can be effectively sam-
pled by a three- to four-person crew in a single day, sampling
is usually limited to a single stream site in a given work day.
Because of the time required to complete multiple-pass removal
sampling, the use of single-pass sampling as an index of density
has been proposed as a cost-effective alternative (Vehanen et al.
2013). Single-pass total catch and CPUE have been shown to
be highly correlated with abundance and density estimates from
three-pass removal sampling, particularly for small streams
(Kruse et al. 1998; Bergman et al. 2011). However, single-pass
indices may be imprecise and of limited use as monitor-
ing indicators if catchability varies spatially or temporally
(Bergman et al. 2011). Thus, our objectives were to (1) examine
relationships between Brook Trout density and natural and
anthropogenic landscape characteristics and (2) examine spatial
and temporal variation in catchability and the relationship be-
tween single-pass and three-pass removal density estimates in an
attempt to determine the efficacy of using single-pass CPUE as
an index of density for Brook Trout monitoring and assessment.

METHODS
Fish sampling.—Three-pass removal data for age-1 and older

(>100 mm TL) wild Brook Trout were obtained from the Penn-
sylvania Fish and Boat Commission (PFBC). Removal data were
collected under summer base flow conditions using a three-

FIGURE 1. Map of Pennsylvania, USA, showing the stream reach line seg-
ments of sites where Brook Trout were sampled using three-pass removal
methods.

person crew at 291 sites representing 212 coldwater streams over
a 37-year time period (1975–2011). Sample sites were located
throughout Pennsylvania, but primarily in the north-central re-
gion (Figure 1), which comprises large tracts of forested land
and represents the stronghold for Brook Trout in the state. All
sample sites were linked to the National Hydrography Dataset
Plus version 1 (NHDPlusV1; USEPA and USGS 2005), and no
two sample sites were located within the same stream reach
(reaches delineated by NHDPlus). All fish sampling involved
standard backpack electrofishing procedures established by the
PFBC (Detar et al. 2011).

Landscape predictors.—We used the 1:100,000-scale NHD-
PlusV1 stream reaches as the base spatial unit for data man-
agement and analysis. Landscape predictors were summarized
within the upstream network catchment for each stream reach
(Esselman et al. 2011). We summarized predictors only at the
network catchment scale because landscape predictors at the
local (i.e., land area draining directly to a reach) and network
catchment scales were highly correlated for our relatively small
stream systems. In addition, we were particularly interested in
cumulative upstream impacts on Brook Trout density. We in-
cluded natural and anthropogenic landscape predictors that we
hypothesized to influence Brook Trout density (Table 1). We pre-
dicted that Brook Trout density would be positively correlated
with both the percentage of forest cover and the mean elevation
and would be negatively correlated with all anthropogenic land-
scape characteristics. We also predicted that stream width would
be an important predictor of Brook Trout capture probability,
with smaller, narrower streams having a higher probability of
Brook Trout capture than wider streams.

Statistical analysis.—We fitted a Bayesian hierarchical
model for three-pass successive removal data to elucidate
spatial and temporal variation in Brook Trout density and
capture probability as well as to determine the effects of land
use and cover type on density. The basic model was described in
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260 WAGNER ET AL.

TABLE 1. Natural and anthropogenic landscape characteristics (with data source) used to predict Brook Trout density in Pennsylvania streams. All metrics were
summarized at the network catchment scale.

Landscape characteristic Mean SD Min Max Source

Catchment area (km2) 22.0 73.0 1.8 1,170.7 USEPA and USGS 2005
Mean elevation (m) 561.4 85.9 255.3 818.2 USGS 2006
Impervious surface (%) 0.15 0.37 0.0 3.2 USGS 2008
Road density (m/km2) 1,018.6 617.2 0.0 4,501.8 U.S. Bureau of the Census 2000
Developed land (%) 0.02 0.03 0.0 0.37 USGS 2008
Agriculture (%) 0.04 0.09 0.0 0.54 USGS 2008
Forest (%) 0.89 0.11 0.38 1.0 USGS 2008

detail by Parent and Rivot (2013); however, a brief description
of the model follows. The sampling distributions of the catch
data followed a binomial distribution

C1
i, j ∼ Binomial (νi, j ,πi, j ),

C2
i, j ∼ Binomial

(
νi, j − C1

i, j ,πi, j
)
,

C3
i, j ∼ Binomial

(
νi, j − (

C1
i, j + C2

i, j

)
,πi, j

)
,

where Cn
i, j is the catch on the nth pass (n = 1, 2, or 3) for the

ith site in the jth year; νi, j is the initial population size; and πi, j

is the capture probability, which is assumed to remain constant
among passes. The model is parameterized where the initial pop-
ulation size depends on the expected fish density (δi, j ; fish/m2)
and the surface area of the sample site (Si, j ). Thus, the initial
population size is assumed to follow a Poisson distribution,

νi, j∼ Poisson (δi, j × Si, j ).

The effects of predictors on the expected mean density and
the probability of capture were modeled on the loge and logit
scales, respectively, as

E(loge(δi, j )) = αδj + βδ1 Xi, j ,

E(logit(πi, j )) = απj + βπ1 Xi, j ,(
loge(δi, j )

logit(πi, j )

)
∼ N

((
E

(
loge(δi, j )

)
E

(
logit(πi, j )

)
)

,

(
σ2

δ ρδπσδσπ

ρδπσδσπ σ2
π

) )
,

where αδj and απj are random year effects for density
and probability of capture, respectively. We assumed that
αδj ∼ N (µδ, σ

2
αδ) and απj ∼ N (µπ, σ2

απ), where µδ is the overall
mean density, µπ is the overall mean probability of capture, and
σ2

αδ and σ2
απ are the among-year variances in density and proba-

bility of capture, respectively. Random year effects for density
and probability of capture were included because we predicted
that annual variation in climate and streamflow—factors that
might influence all sites similarly in a given year—would result

in annual variation in these two parameters. The fixed effects of
βδ1 and βπ1 describe the relationship between predictor Xi, j and
the loge(density) or logit(probability of capture). A bivariate
normal distribution was used to quantify residual variation and
the correlation between density and probability of capture (σ2

δ ,
σ2

π, and ρδπ). The aforementioned model allowed us to quantify
among-year variability in density and the probability of capture.
However, to further test for temporal trends in density and
capture probability, we explicitly modeled the random year
effects (random intercepts) as a function of time (i.e., we added
the year of sampling as a predictor variable for the random year
intercepts). Noninformative priors were used for all parameters.
The models were fitted by using Bayesian estimation, and the
program JAGS was used for all analyses (Plummer 2011).
Three parallel chains were run with different initial values to
generate 150,000 samples from the posterior distributions for
each analysis after discarding the first 80,000 samples. We
retained every third sample for a total of 70,000 samples.

Candidate models.—Two kinds of models were fitted: (1)
an unconditional model to quantify unconditional spatial and
temporal variability using all of the data (n = 346 removal sam-
pling occasions across 291 sites); and (2) a set of landscape-
based models to examine landscape correlates of density. The
landscape models were restricted to sites that were sampled
between 1991 and 2011 (n = 267); this was done to ensure
that the sampling events bracketed the years when land use
and land cover were derived (Homer et al. 2007). The land-
scape metrics that were considered as predictors of Brook Trout
density included mean elevation, catchment area, percent de-
veloped and agricultural land use, percent forest cover, percent
impervious surface, and road density (Table 1). As expected,
many of the landscape metrics were highly correlated. To ad-
dress the issue of collinearity, we first fitted models containing a
single landscape predictor for Brook Trout density. Second, we
fitted two- and three-predictor models, which included predic-
tors that had a correlation coefficient (r) less than 0.60. Mean
stream width was included as a predictor of capture probability
in all candidate models because we expected it to be an im-
portant determinant of capture probability. Because the use of
information-theoretic criteria (e.g., Akaike’s information crite-
rion and deviance information criterion) for hierarchical model
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BROOK TROUT DENSITY DYNAMICS 261

selection is not straightforward, largely because of difficulty in
determining the effective number of parameters, we assessed
statistical “significance” by examining whether or not the 95%
credible intervals (CRIs) for estimated coefficients overlapped
zero. After selecting a top-ranked model, we evaluated the pre-
dictive performance by withholding approximately 15% of the
sites (40 sites), refitting the model, and predicting the density
at the 40 holdout sites. The posterior distributions for the ob-
served and predicted densities were then plotted (for details, see
Supplement A in the online version of this article).

To evaluate the relationship between first-pass CPUE
(catch/min) and density, we fitted a linear regression model with
loge(first-pass catch/min) as the predictor and loge(density), es-
timated from the complete data set, as the response variable. This
analysis was restricted to sampling occasions that had first-pass
effort (electrofishing time, min) information (n = 343 occa-
sions). The relationship between first-pass catch per minute and
density was plotted after the data were retransformed, and 80%
and 95% prediction intervals were calculated (Stow et al. 2006).

Power analyses were performed to compare the utility of us-
ing first-pass catch per minute (i.e., density predicted from the
relationship between first-pass catch per minute and density)
versus the density estimated from three-pass removal sampling
in two monitoring scenarios. For conciseness, we focus our two
scenarios on monitoring and assessment of a single stream be-
cause our goal is to elucidate when a first-pass catch index may
be useful and when it may not be useful rather than to determine
an optimal monitoring design for any particular management ob-
jective. First, we examined the difference (in terms of statistical
power) between using first-pass catch per minute and three-pass
removal estimates to evaluate a management action (e.g., habitat
improvement) that was designed to increase Brook Trout den-
sity in a stream. Specifically, this scenario (scenario 1) consisted
of sampling Brook Trout prior to implementation of the man-
agement action (hereafter, pre-management), sampling Brook
Trout again after the management action occurred (hereafter,
postmanagement), and comparing the two estimates. If the 95%
CRI of the difference between the pre- and postmanagement
estimates did not contain zero, then the estimates were consid-
ered statistically different. Briefly, the power analysis consisted
of using a simple removal model to generate samples from the
posterior distributions for Brook Trout density (mean = 0.03
fish/100 m2; 95% CRI = 0.02–0.04 fish/100 m2) and capture
probability (mean = 0.74; 95% CRI = 0.61–0.84) using three-
pass depletion data collected from a Pennsylvania stream. Next,
we used the posterior samples of density and capture probabil-
ity to generate 250 simulated data sets for each of 10 potential
population responses to a management intervention designed to
increase Brook Trout density. The 10 hypothetical population
responses were modeled as percent increases in density (10, 15,
20, 30, 40, 50, 60, 70, 80, and 90% increases; i.e., the effect sizes)
for a total of 2,500 simulated data sets. Each of these simulated
data sets consisted of catches for each of the three electrofishing
passes during postmanagement sampling. For each simulated

data set, we then estimated postmanagement density by using
all of the three-pass catch data, and we predicted density by us-
ing the linear regression model with loge(first-pass catch/min)
as the predictor and loge(density) as the response variable, as
described above. For each of the 250 simulations and for each
of the potential population responses and two approaches to es-
timating density, we tallied the number of times in which the
95% CRI of the difference between pre- and postmanagement
densities did not contain zero (i.e., when the two estimates were
considered statistically different). We report power as the pro-
portion of simulations during which statistically different results
were detected.

For the second management scenario (scenario 2), we exam-
ined the difference (in terms of statistical power) between the
density predicted from the first-pass catch per minute–density
relationship and the density estimated using three-pass removal
data to detect a significant linear temporal trend in Brook Trout
density within a stream. The simulation approach used for the
power analysis was similar for that described for scenario 1;
however, instead of estimating the power to detect differences
in pre- versus postmanagement densities across a range of effect
sizes, we evaluated the power to detect a 5% annual increase in
Brook Trout density over a 10-, 20-, 25-, or 30-year period by
using point estimates (posterior means) of density over time for
both the density predicted from the first-pass catch per minute–
density relationship and the density estimates obtained by using
catch data from all three passes. For each of the 250 simulations
and for both approaches to estimating density, we fitted a linear
regression model to the time-series of loge transformed density,
examined whether the slope estimate was positive, and deter-
mined whether the 95% CRI for the slope (trend) parameter
overlapped zero. We report power as the proportion of simula-
tions in which statistically significant and positive trend results
were detected.

RESULTS
Three-pass removal data from the 291 stream sites resulted

in a total of 346 population estimates because 55 sites (16%)
were sampled multiple times over the course of the time series.
The number of times a given site was sampled ranged from 1
to 6. Seventeen sites were sampled twice, one site was sampled
three times, two sites were sampled four times, five sites were
sampled five times, and two sites were sampled six times (the
remaining sites were sampled once). The mean site length was
288 m (SD = 54; range = 97–451 m), and mean site width
was 4.0 m (SD = 1.6; range = 1.2–11.9 m). The mean stream
surface area was 1,151 m2 (SD = 580; range = 285–3,927 m2).
The overall estimated mean density of age-1 and older Brook
Trout was 5.7 fish/100 m2 (range = 0.24–37.2 fish/100 m2, 95%
CRI = 4.6–7.1 fish/100 m2, σ̂2

δ = 0.83; Figure 2A). The overall
estimated mean probability of capture was 0.72 (range = 0.52–
0.85, 95% CRI = 0.71–0.74, σ̂2

π = 0.18; Figure 2B).
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262 WAGNER ET AL.

FIGURE 2. Estimated Brook Trout (A) density and (B) probability of capture from three-pass removal data for 346 sampling events in Pennsylvania streams.
Squares are posterior means, vertical lines are 95% credible intervals, and the horizontal gray line represents the grand mean.

The number of sites sampled per year ranged from 1 to
29. Data were not available for the years 1976–1979 and 1985
(Figure 3A). Estimated annual average density (across all sites)
was variable and ranged from 2.1 to 10.2 fish/100 m2 (σ̂αδ =
0.51, 95% CRI = 0.33–0.75; Figure 3A), whereas the estimated
annual mean capture probability did not vary substantially,
ranging from 0.71 to 0.74 (σ̂απ = 0.08, 95% CRI = 0.005–0.17;
Figure 3B). The slope parameters describing the effect of

time (i.e., a temporal trend) on average annual density and
probability of capture overlapped zero, suggesting no apparent
temporal trends in either parameter (trend parameter estimate
for density = −0.033, 95% CRI = −0.264 to 0.193; trend
parameter estimate for capture probability = −0.022, 95%
CRI = −0.097 to 0.052; Figure 3).

The top-ranked landscape-based model included the predic-
tors of mean elevation and percent developed land (Table 2;
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BROOK TROUT DENSITY DYNAMICS 263

FIGURE 3. Estimated annual average (A) density and (B) capture probability of Brook Trout from three-pass removal data for 346 sampling events in Pennsylvania
streams. Squares are posterior means; vertical lines are 95% credible intervals. Horizontal lines are hierarchical regression fitted lines; shaded regions are 95%
credible regions. The numbers adjacent to estimates in panel (A) represent the number of sampling events that occurred in each year. Note the missing data for the
years 1976–1979 and 1985.

posterior mean for the correlation between density and capture
probability for this model = 0.02, 95% CRI = −0.20 to
0.23). Percent developed land was negatively correlated with
Brook Trout density, and elevation was positively correlated
with Brook Trout density (Figure 4A). As expected, mean
stream width was negatively correlated with the probability

of capture (Figure 4B). The top-ranked model predicted, on
average, a Brook Trout density of 11 fish/100 m2 (95% CRI
= 7–16 fish/100 m2) at high-elevation (∼800 m) sites with
no developed land and a density of 2 fish/100 m2 (95% CRI
= 1–3 fish/100 m2) at sites with 37% developed land (the
highest network catchment land use percentage observed in
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264 WAGNER ET AL.

TABLE 2. Estimated posterior means (corresponding 95% credible intervals in parentheses) for predictors in the candidate landscape-based models of variation
in Brook Trout density and capture probability. Brook Trout densities were estimated based on three-pass removal data from 267 sites (Pennsylvania Fish and
Boat Commission data). All candidate models included mean stream width as a predictor of capture probability. Models are ranked according to the number of
estimated coefficients with 95% credible intervals that did not overlap zero (shown in bold italics). See Table 1 for a description of predictors (NI = predictor was
not included in the model).

Predictors of Brook Trout density
Predictor of capture

probability Impervious Catchment Mean Road
Model Stream width Developed land Forest surface Agriculture area elevation density

1 −0.182 −0.291 NI NI NI NI 0.163 NI
(−0.269, −0.095) (−0.535, −0.044) (0.046, 0.281)

2 −0.180 −0.267 NI NI NI −0.087 0.159 NI
(−0.268, −0.150) (−0.513, −0.018) (−0.203, 0.029) (0.041, 0.276)

3 −0.175 NI NI NI NI NI 0.201 NI
(−0.264, −0.085) (0.087, 0.315)

4 −0.188 −0.393 NI NI NI NI NI NI
(−0.274, −0.100) (−0.635, −0.153)

5 −0.179 NI NI NI NI −0.123 NI NI
(−0.267, −0.091) (−0.241, −0.006)

6 −0.176 NI NI NI −0.005 NI 0.200 NI
(−0.266, −0.087) (−0.137, 0.127) (0.084, 0.316)

7 −0.177 NI NI −0.280 NI NI 0.195 NI
(−0.267, −0.088) (−0.294, 0.613) (0.079, 0.312)

8 −0.178 NI 0.063 NI NI NI 0.196 NI
(−0.267, −0.090) (−0.076, 0.201) (0.082, 0.310)

9 −0.184 NI 0.086 NI NI NI NI NI
(−0.273, −0.096) (−0.054, 0.227)

10 −0.185 NI NI −0.695 NI NI NI NI
(−0.272, −0.096) (−1.698, 0.284)

11 −0.184 NI NI NI NI NI NI −0.043
(−0.273, −0.096) (−0.143, 0.056)

12 −0.154 NI NI NI −0.135 NI NI NI
(−0.252, −0.056) (−0.285, 0.016)

our study) and low elevation (mean catchment elevation =
255 m; Figure 4A). However, based on predictions for holdout
sites, the model tended to underpredict Brook Trout density
for sites with high observed densities. There was also a high
amount of uncertainty for several holdout sites (as indicated
by wide predicted posterior distributions; Supplementary
Figure 1).

First-pass Brook Trout CPUE ranged from 0.02 to 6.8
fish/min (SD = 1.19) and was correlated with the three-pass
removal density estimates (Figure 5). The estimated slope of the
relationship between loge(first-pass catch/min) and estimated
loge(density) was 0.93 (95% CRI = 0.88–0.98), and the
estimated intercept was −3.03 (95% CRI = −3.07 to −2.98).
Loge(first-pass catch/min) explained 80% of the variation in
loge(density). Despite the correlation between loge(first-pass
catch/min) and loge(density), the corresponding 80% and 95%
prediction intervals were fairly wide, indicating that first-pass
CPUE was a relatively imprecise index.

The power analysis for management scenario 1, which com-
pared the predicted density from the first-pass catch per minute–
density relationship and the estimated density from three-pass

removal sampling to evaluate a management action, highlighted
the low statistical power (near zero over the range of effect
sizes examined) of using predicted density from the first-pass
CPUE index (Figure 6A). The low power resulted from the large
amount of uncertainty in the predicted densities (e.g., Figures 5,
6B). When using three-pass removal estimates, a power of 0.80
was achieved at a postmanagement density increase of approx-
imately 55%. For this scenario, estimation of density by using
three-pass removal data led to a large increase in power rela-
tive to using predicted density from first-pass catch per minute;
the increase in power was largely a function of the increase in
precision gained by performing three passes to estimate density.
Conversely, in scenario 2, the power to detect a long-term linear
trend—a management objective that does not necessarily require
precise estimates at any given site—was similar when using ei-
ther the predicted density from first-pass catch per minute or
the estimated density from three-pass removal sampling. The
statistical power required for both the predicted and estimated
densities to detect a 5% annual increase in density over 10-, 20-,
25-, and 30-year sampling time frames was approximately 0.07,
0.54, 0.86, and 0.98, respectively.

D
ow

nl
oa

de
d 

by
 [

Pe
nn

sy
lv

an
ia

 S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
3:

29
 1

3 
M

ar
ch

 2
01

4 



BROOK TROUT DENSITY DYNAMICS 265

FIGURE 4. (A) Brook Trout density predictions (fish/100 m2) from the top-ranked hierarchical model in relation to the percentage of developed land in the
network catchment and mean elevation; and (B) the relationship between stream width and Brook Trout capture probability. The predicted surface in panel (A)
shows the posterior means. In panel (B), points represent posterior means, vertical lines are 95% credible intervals, and the shaded region is the 95% credible
region around the fitted line.
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266 WAGNER ET AL.

FIGURE 5. Relationship between first-pass catch per minute and estimated density of Brook Trout from three-pass removal sampling for 343 stream sampling
events in Pennsylvania. Squares are posterior mean estimated abundances; vertical lines are 95% credible intervals from a hierarchical model. Dark- and light-shaded
regions correspond to 95% and 80% prediction regions, respectively, around the retransformed posterior mean predictions (r2 = 0.80).

DISCUSSION
We quantified the spatial and temporal variability in age-1

and older Brook Trout density and capture probability, examined
landscape correlates of density, and examined the relationship
between first-pass catch per minute and density estimates from
three-pass removal sampling. We found substantial variability in
Brook Trout density among sites and years. This was expected
because Brook Trout density at any given site or year can be
related to local biotic (e.g., density-dependent processes) and
abiotic (e.g., physical habitat) factors, such as annual variation
in streamflow (Deschênes and Rodrı́guez 2007; Grossman et al.
2010). This high annual variation in abundance is common for
inland trout populations (Dauwalter et al. 2009). Because our
analysis included a relatively large number of sample sites, the
range of estimated Brook Trout densities observed in this study
could be used by managers to help refine current management
objectives and expectations as they relate to the fish densities that
might be expected as a result of fisheries management actions,
restoration efforts, or water quality protection. Managers can
also use the results from the top-ranked landscape-based model
to help anticipate the effects of landscape development on Brook
Trout densities across a range of elevations.

We did not observe a regional decreasing trend in Brook Trout
density: annual densities were variable and relatively uncertain.
This does not suggest that the number of streams supporting self-
sustaining Brook Trout has not declined over the 37-year period
of interest. In fact, much of the historical Brook Trout habitat

in Pennsylvania no longer supports self-sustaining populations
(Hudy et al. 2008), and it is likely that localized losses have
occurred in recent years as a result of land development and
other stressors. Rather, our results illustrate that within streams
supporting Brook Trout populations, the annual average density
of fish has not systematically declined. In addition, because
the stream sites used in this study were not randomly selected,
our inferences about temporal trends cannot be generalized to
all Brook Trout streams in Pennsylvania. However, because
of the negative relationship between Brook Trout density and
development, we would predict that for relatively undeveloped
catchments, future increases in development may be followed
by declining regional trends in density.

The percentage of developed land cover in the network catch-
ment was found to have a negative effect on Brook Trout den-
sity, but the exact mechanisms are unknown. We did not find
effects of road density or impervious surface cover on Brook
Trout density (95% CRIs overlapped zero; these variables were
correlated with developed land cover); however, other studies
have documented negative associations between these factors
and Brook Trout density. Stranko et al. (2008) reported that
Brook Trout densities in Maryland declined as the impervi-
ous surface percentage increased in the catchment, and Pépino
et al. (2012) observed that highway crossings with low and
intermediate passability had a negative effect on Brook Trout
density. The effects of development on Brook Trout in our study
and on coldwater fishes in general likely result from several
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BROOK TROUT DENSITY DYNAMICS 267

FIGURE 6. (A) Power curves evaluating the power to detect significant increases in Brook Trout density over a range of effect sizes (percent increases) by
comparing densities estimated via three-pass removal before and after a management action (solid line; scenario 1 in Methods) or densities predicted from first-pass
catch per minute (dashed line). A difference between pre- and postmanagement densities was considered significant if its 95% credible interval did not contain
zero. Horizontal line represents a power of 0.80, which is shown for reference. Panel (B) illustrates results from a single simulation. The horizontal solid line is the
pre-management posterior mean density (dashed lines = 95% credible interval) estimated from three-pass removal sampling; the open circles are postmanagement
density estimates (vertical lines = 95% credible intervals) from three-pass removal sampling; and the shaded circles are densities (vertical lines = 95% predictive
intervals) predicted from first-pass catch per minute by using a regression model. Note the negative bias in the three-pass removal estimator in panel (B) (Sweka
et al. 2006).
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direct and indirect effects on stream characteristics, including
increased water temperature, increased sediment loading, and
altered hydrologic regimes associated with the loss of forest
cover, increases in road density (and potentially road crossings
over streams), and increases in impervious surface percentages
(Wang et al. 1997).

The inability of a landscape-based model to predict density
at all sites with reasonable accuracy (Supplementary Figure 1)
and precision is not surprising, as our top-ranked model did not
account for other biological and abiotic factors that interact to
ultimately determine Brook Trout density in any given stream.
However, the top-ranked model was still useful for illustrating
the average relationship between developed land and Brook
Trout density and will be useful for managers as they attempt to
anticipate the effects of development on Brook Trout density.

Unlike fish density estimates, the probability of capture did
not vary substantially among sites or among years, and the
small variation that existed among sites was negatively corre-
lated with mean stream width. A negative correlation between
capture probability and mean stream width was expected and
has been reported in other studies for a variety of trout species
(e.g., Kruse et al. 1998). Hense et al. (2010) also found that
Brook Trout capture probability was negatively correlated with
mean stream width, and they estimated a capture probability
of 0.72 for adult Brook Trout, the same as our overall mean
estimate of 0.72.

The low spatiotemporal variability, in combination with the
correlation between first-pass catch per minute and estimated
density from three-pass removal sampling, suggests that single-
pass catch per minute could serve as a surrogate for three-pass
removal density estimates to support some local and large-scale
objectives for Brook Trout monitoring in small Pennsylvania
streams. However, the evaluation of statistical power for the
two management scenarios highlights the need to explicitly de-
fine the goal of the monitoring and assessment program. For
example, if an assessment of a stream or set of streams requires
relatively precise estimates of density (e.g., scenario 1; Fig-
ure 6), then predicting density from the first-pass catch may not
be advisable. Rather, the increase in precision achieved by per-
forming three passes may be well worth the additional sampling
effort. However, if the goal is long-term trend detection (at a
single site or regionally across sites) and if a precise estimate
of density at any single stream is not required to meet manage-
ment objectives, then predicting density from first-pass catch per
minute may be sufficient. This may be particularly important for
regional long-term trend monitoring programs in which there is
a need to minimize the amount of time spent sampling at any
single site so that more sites can be sampled across the region of
interest. We expect that the number of sites that could be sam-
pled in a single workday by using single-pass removal would at
least double in comparison with three-pass removal, thus pro-
viding the ability to evaluate Brook Trout population trends in
more streams and across a broader spatial extent. Bergman et al.
(2011) also concluded that single-pass CPUE could provide a

reliable index of adult trout abundance in Wisconsin streams,
but that study did not address the uncertainty in estimating abun-
dance with first-pass catch.

Lastly, the results of our power analyses support previous
studies’ power analyses, highlighting the fact that statistical
power to detect changes in status or temporal trends is quite
low over management-relevant time frames and for relatively
small effect sizes. For example, our power analysis suggested
that it takes more than 20 years to achieve a power of at least
0.80 for detecting an annual 5% increase in density. Dauwalter
et al. (2009) also found that for many trout populations, the
number of years required to detect a 5% annual change (in this
case, a decline) with a power of 0.80 or greater and an α of
0.05 could be more than 20 or 30 years. In addition, a literature
review by Wagner et al. (2013) found that the mean number
of years required for detection of a trend magnitude less than
5% per year with a power of at least 0.80 was 19 years. The
relatively long duration (or large effect sizes) required to detect
significant temporal trends is common for freshwater fish and
habitat metrics and emphasizes the critical role of translating
management questions to monitoring objectives as part of the
overall management process (Wagner et al. 2013). Thus, the
ultimate efficacy of using single-pass catch as an index of Brook
Trout density will be dictated by the specific goals and objectives
of any given monitoring program.

As changes to the landscape continue and as aquatic habitats
are altered under a changing climate, the ability to make infer-
ences about local and regional dynamics of fish populations is of
increasing importance. The use of hierarchical models like those
employed here allows for the estimation and evaluation of spa-
tial and temporal variability in parameters that are of interest to
both management and conservation while also allowing for the
elucidation of correlates that may be influencing the observed
dynamics. As generating regional inferences becomes increas-
ingly important, the fiscal resources needed for monitoring over
large spatial scales will likely be reduced over time (and even if
fiscal resources do not decrease, cost-effective approaches are
still desirable). Thus, the development of cost-effective assess-
ment techniques that use indices of density (or abundance) will
also increase in importance. For example, a change in sampling
technique from multiple-pass electrofishing to single-pass elec-
trofishing may allow field crews to sample more sites or water
bodies in a given day and increase the overall spatial cover-
age of sampling efforts, thus enabling stronger inferences to be
made about the region of interest. However, the validity of these
indices should be evaluated within the context of specific man-
agement objectives and on a species-by-species basis to ensure
their efficacy.
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